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The problem considered is that of a strong shock propagating from a point energy 
source into a cold atmosphere whose density varies exponentially with altitude. 
An explicit analytic solution is obtained by taking the flow field as ‘locally 
radial’ and using an integral method with an energy constraint. A scaling law is 
given which eliminates the parametric dependence of the solution on the ex- 
plosion energy, scale height, and atmospheric density at  the point of the ex- 
plosion. The scaling law also transforms the infinity of solutions for various polar 
angles into two distinct solutions which show that all motions of the ascending 
portion of the shock may be scaled from the vertically upward behaviour and all 
motions of the descending portion of the shock may be scaled from the vertically 
downward behaviour. The limit in the lateral direction of both of the funda- 
mental solutions corresponds to the case of the uniform density atmosphere. 
The results for the uniform density atmosphere show remarkable agreement with 
the exact Taylor-Sedov results. Comparison with finite difference calculations 
of Troutman & Davis for the vertically upward and downward directions shows 
excellent agreement with respect to the prediction of shock propagation velocity, 
position, and the flow variables behind the shock. A scaling law for the time, shock 
velocity, and pressure for different values of the adiabatic exponent y is pro- 
posed which correlates the results of the present analysis for different values of y 
over the entire range of shock positions where the analysis applies, The solution 
shows that, contrary to the result obtained by Kompaneets, there is no theoretical 
limit as to how far downward a strong shock may propagate. The far field be- 
haviour of the shock wave in the upward and downward directions is found to be 
of the same form as the self-similar asymptotic solutions obtained by Raizer for 
a plane shock. It is shown by relaxing the energy constraint in the vertically down- 
ward direction that the asymptotic result obtained agrees closely with that ob- 
tained by Raizer. The energy constraint, however, is the appropriate one for all 
but the far field behaviour. The far field limit of the present solution in the up- 
ward direction is found to compare favourably with the approximate asymptotic 
calculations of Hayes for an ascending curved shock. The empirical concept of 
‘ modified Sachs scaling ’ for calculating the overpressure is considered and shown 
within this model to have a justification in the downward direction but a limited 
range of applicability in the upward direction. 
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1. Introduction 
The problem considered is that of a strong shock propagating from a point 

source into an inhomogeneous atmosphere whose density varies exponentially 
with altitude (see Zel’dovich & Raizer 1966). It was f i s t  treated by Karlikov 
(1955) by linearizing about the corresponding solution obtained by Sedov (1946) 
and Taylor (1950) for a uniform density atmosphere. Kompaneets (1960) 
analysed the problem approximately by assuming a uniform pressure through- 
out the flow field behind the shock wave. This pressure was taken to be propor- 
tional to the average energy density in the volume bounded by the shock wave 
and differed from the pressure immediately behind the shock by a factor of A. 
The value of h was estimated from the Taylor-Sedov uniform atmosphere solu- 
tion and was dependent only on the constant adiabatic exponent. The uniform 
‘sea of pressure’ was assumed to drive the flow field mass which was taken to be 
contained in a thin layer behind the shock surface. The solution was improved 
upon by Andriankin et al. (1962)’ who calculated a local A, which was a function 
of both time and polar angle. Raizer (1963, 1964) obtained self-similar solu- 
tions for a plane rising and descending shock in an exponential atmosphere 
which he used to describe the asymptotic far field behaviour of the upper and 
lower parts of the shock wave originating from a point source. Apparently 
unaware of the previous work of Raizer, Grover & Hardy (1966) published 
the self-similar solution for a plane shock wave travelling upward along 
with some numerical calculations. Hayes (1968 a) determined the self-similar 
asymptotic solutions in a medium with exponentially varying ray-tube area 
as well as density. Hayes (19683) attempted to determine the local effect 
of curvature on Raizer’s asymptotic rising shock solution by means of an 
approximate calculation based on the use of the Chester, Chisnell, Whitham 
shock propagation law, but with the exponents taken from the results of Hayes 
( 1968 a). 

The purposes of the present paper are: (a) to obtain an approximate analytic 
solution valid for all times and to deduce scaling laws based on the solution; 
(a) to compare the results obtained with exact numerical calculations; (c) to see 
if the Kompaneets model is justified and to see if there is, as predicted by Kom- 
paneets, a limit as to how far downward a strong shock can propagate; (d) to 
compare the far field results of the present analysis with the asymptotic limits 
of Raizer and Hayes; ( e )  to investigate the empirical concept of ‘modified Sachs 
scaling ’ for calculating the overpressure. 

2. Theory 
In  the present analysis the shock wave is assumed sufficiently strong that 

counterpressure may be neglected and the strong shock relations can be applied. 
The gas is considered to be a calorically and thermally perfect one characterized 
by an adiabatic exponent y. Body forces due to the earth’s gravitational and 
magnetic fields, wind effects, and heat transfer by radiation and conduction 
are neglected. The atmosphere is thus considered to be initially at rest and cold, 
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i.e. at  zero temperature and pressure, with a density distribution given by the 
exponential law 

(1) Po =PBexP(--hlA)* 
Here, A is the scale height of the atmosphere taken to be a constant, po the atmos- 
pheric density, ps the density at the burst point, and h the altitude measured 
positive upward from the point of explosion. 

FIGURE 1. Flow geometry. 

In  figure 1 a sketch is shown of the shock envelope at  a given time after ex- 
plosion along with the polar co-ordinate system used in the present analysis. The 
basic assumption to be employed in the theory is that the flow field is 'locally 
radial'. By this is meant that we may neglect gradients in the 8 direction, where 
8 is the polar angle measured from the vertical axis as shown in figure 1. Such an 
assumption corresponds to considering the streamlines from the origin as straight. 
It should be noted that for large shock radii (of about P 5  scale heights) as the 
shock becomes increasingly asymmetric, the assumption of negligible gradients in 
the 8 direction will be less satisfactory. We would also note, however, that the 
strong shock assumption becomes invalid by the time the shock has propagated 
about P 6  scale heights, except for 8 < in, even for the largest energy sources 
of practical interest (see, e.g. Troutman & Davis 1965). 

Under the preceding assumptions, the problem is axisymmetric about the 
vertical axis through the energy release point, designated as the origin in figure 1. 
Here T is the Eulerian co-ordinate of a fluid particle of thickness dr, and R(t; 8) is 
the position of the shock front at  a given polar angle '8. In the present problem 
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it was found convenient to utilize a Lagrangian formulation. The exponential 
density distribution given by (1) can be written in terms of the Lagrangian 

( 2 )  
co-ordinate ro as 

with ro defined to be the position of a particular fluid particle at  the burst time, 
t = 0. 

With the assumption of local radiality the continuity equation for any polar 
angle is simply 

PO = P B  exp [ - ( r O / A )  ‘OS 

(3) porgdro = pr2dr. 

The radial momentum equation when expressed in Lagrangian co-ordinates by 
means of (3) is 

Finally, for a perfect gas with the assumption that the entropy of a fluid 
particle remains constant after passage through the shock, the energy equation 
reduces to 

where the subscript s refers to conditions when the particle is at the shock front. 
With the strong shock assumption we have 

and 

Ps  = y+lPo ~ 

Y-1 

(7 )  

with the dot over the shock location €2 denoting differentiation with respect to 
time. 

The independent variables in the problem are the Lagrangian co-ordinate ro 
and the time t. The problem considered is not a self-similar one since it contains 
the characteristic length scale A, and there is a fixed point in space from which it 
can be measured (the energy-release point). An exact analytic solution therefore 
appears difficult to obtain and we instead seek an approximate solution by an 
integral method of the type discussed by Hayes & Probstein (1966). 

We begin by writing the momentum equation (4) in integral form 

where ps is the pressure immediately behind the shock front and T, is a dummy 
variable. Consistent with the assumption that the mass contained within a 
differential solid angle is constant , the integral energy conservation equation 
(see e.g. Hayes & Probstein 1966) for a given polar angle may be expressed 

where we have for later convenience written the first integral in Eulerian form. 
Here E is the total hydrodynamic energy of the flow field, considered to be known 
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and constant, since heat transfer by radiation out through the shock front and 
counterpressure have been neglected. In  (9) the first term on the right-hand side 
represents the internal energy per unit solid angle and the second term the kinetic 
energy per unit solid angle. 

We next consider how, based on the nature of the flow, the integrands in (8) 
and (9) may be approximated. Chernyi (1957, 1959, 1960, 1961) has suggested 
their determination by a perturbation expansion about their values at  the shock 
front using the strong shock-density ratio e = p,/p, given by (6) as the small 
parameter. Thus, in one approach, the Eulerian co-ordinate r is expanded as a 
power series in e in which the coefficients are functions of the time t alone. The 
justification for this method is that for a strong shock most of the flow is concen- 
trated in a thin layer next to the shock, while the remaining region of the flow 
field is essentially at constant pressure. This technique has been found to work 
remarkably well in a number of problems as, for example, in the point-explosion 
problem in a uniform atmosphere. We would note that in the present problem 
when the shock is propagating downward (in < 19 < n) into a region of increasing 
density the effect of the mass being concentrated at  the shock will be intensified. 
On the other hand, when the shock is propagating upward (0 < I9 < in-) the effect 
will be diminished and it cannot be assumed in advance that the mass will always 
be concentrated at the shock front. Of course, whether this is the case can be 
checked at  intermediate stages of the solution. 

In the present analysis we shall make use of the idea that most of the mass is 
concentrated near the shock. However, we shall not employ the method of 
Chernyi since it has the limitation that even though the expansion is about the 
shock front, terms involving second and higher derivatives of r with respect to t 
are not exact even there, except in the limit E -+ 0. Instead we shall use a scheme 
whereby these quantities are evaluated exactly at the shock. To do this we 
expand the Eulerian co-ordinate r in a Taylor series about the shock front, so 
that the integrals in (8) and (9) can be approximated in a manner analogous to 
that of Stokes’ method of stationary phase and Laplace’s method. We that note 
r is a function of the independent variables, ro and t .  However, rather than 
expanding directly in terms of these variables we consider a Taylor expansion in 
the Lagrangian co-ordinate ro, with the expansion parameterized in the time t 
through the Taylor coefficients and R. Thus we have for r(ro, t )  

In  the present analysis we shall retain terms only to the order of (r,, - R)2. By 
differentiating (lo), satisfying the conservation equations and boundary con- 
ditions, and assuming that most of the mass is concentrated near the shock front 
so that ( r - R )  < R for ro N R, we then obtain the Eulerian co-ordinate, the 
velocity, and the acceleration immediately behind the shock front expressed in 
terms of R and its derivatives with respect to time. 

From the continuity equation (3) and strong shock condition (6) we have that 
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Using the above relation and differentiating (10) with respect to t we have 

Dallas D. Laumbach and Ronald F .  Probstein 

The first two of the above relations yield the obvious results for the Eulerian 
co-ordinate and velocity behind the shock front, while the acceleration is found 
from (12c) and (2)-(7) 

r, = R, (13a) 

The evaluation of (13c), which is parametrized in 0, is somewhat lengthy and is 
given in the appendix. 

We now approximate r-2(a2r/at2) in the integrand of (8) by the values at  the 
shock given by (13), replace po by (2), and on carrying out the integration obtain 

p-ps  = ( - ) 2 ( ~ ) 2 ~ ( 2 ( 2 y -  2 l)qq-(y- 1)?pj2+4y y + l  cose 73 

x [exp ( - 2 7) [ 6) + @) 7 + 11 - e-'f$ + 7 + 11) . ( 14) 

Here we have defined the basic reduced variable 

with the pressure behind the shock p ,  given from (2) and (7) by 

To evaluate the energy integral (9) we again make use of the fact that to the 
order of the present approximation r is not a function of rot so that for any r 
different from R, the corresponding value of ro is zero. This is equivalent to the 
statement that all of the mass is pulled forward behind the shock such that the 
only remaining mass for r < R is the differential mass originally in the vicinity 
of ro = 0. Thus p(r,t) = p(0, t )  and the internal energy term of (9) is readily 
evaluated by substituting the pressure relation given by (14) with ro set equal 
to zero. The kinetic-energy term in (9) is evaluated by replacing po through (Z),  
and (&/at) by its value at the shock (13b). After carrying out the indicated 
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integrations and combining terms the following ordinary second-order differential 
equation is obtained for q as a function of time: 

where f ( q )  and g(q) are given by 
(17 )  

It is clear that the parametric dependence upon B in (17) can be almost elimin- 
ated by reducing the time scale, and that upon E,  A and pB entirely eliminated, 
by means of the transformation 

(19 )  

f ( q ) q n + g ( q ) p  = 1 for o G e G 4 2 ,  (20 4 
(20b)  f ( 7 ) ~ "  +g(q)q'2 = - 1 for n/2 < 8 Q n, 

where the prime is used here and in what follows to denote differentiation with 
respect to the reduced time t * .  It can be seen that the introduction of the length 
scale Alcos 0 and the time scale (4npBA6/EI cos6 0 I )* enables all motions of the 
ascending portion of the shock (8 < in) to be scaled from a single solution of 
(2Occ) for this regime (say, e.g. 8 = 0)  and all motions of the descending portion 
of the shock (0 > in) to be scaled from a single solution of (20b)  for this regime 
(say, e.g. 0 = n). Either solution can, of course, also be scaled to arbitrary values 
of E, A and pB.  

Since equations (20 )  are autonomous we can take 7 as the independent variable 
and reduce them to the linear first-order equations in q'2 

The solutions of (21 )  are given by 

where y and z are variables of integration, a is a zero of the indicated integrals 
and y > 1 .  The upper and lower signs in (21 )  and (22 )  refer to the upward and 
downward directions, respectively. We have here set the constants of integration 
equal to zero to satisfy the requirement that the solutions reduce to the uniform 
density solution as q + O .  The determination of q = q(t*) follows from (22 )  and 
the relation 

with 5 a dummy variable. 
(23)  
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With 7 and 7' known, the pressure behind the shock can be determined as a 
function of ro at a particular time from (14) and (16). The density as a function 
of the Lagrangian co-ordinate can then be determined from (5). By integrating 
(3) the relation between r and r,, is given by 

From these results, the pressure and the density behind the shock front are found 
as a function of the Eulerian co-ordinate r .  

3. Comparison with other solutions 
We first compare our results with the exact solution of Taylor (1950) and Sedov 

(1946) for the case of a uniform density atmosphere. Within the present model, 
this solution is obtained by considering the limit 7 = R cos O/A --f 0. In  this limit, 
the behaviour of (17) is given in dimensional variables by 

This equation is readily integrated by the same procedure used to obtain (22). The 
result for the shock velocity as a function of shock location is 

which when integrated gives the shock location 

Equation (27) differs from the exact Taylor-Sedovresults (see, e.g. Sedov 1957) 
by 1.8 % for y = 1-2 and 2.3 yo for y = 1-4. The approximate results of Chernyi 
(1957, 1960) differ by 0-9 yo and 1.4 yo, respectively. A comparison of the pre- 
dictions for the pressure behind the shock front for y = 1-4 is shown in figure 2. 
In  this figure, the pressure is reduced by the shock pressure p ,  and the Eulerian 
co-ordinate by the shock position R. The present analysis gives a pressure ratio 
at the origin p(0,  €)Ips of 0.379, which compares with the exact Taylor-Sedov 
value of 0.366, and the approximate Chernyi value of 0.400. 

Turning now to the results for the exponential atmosphere, the shock velocity 
is given as a function of shock location R for y = 1-1,1-2,  and 1.4 in figure 3 for 

the ascending portion of the shock and in figure 4 for the descending portion. 
Both I? and R have been reduced following the scalings of (15) and (19). Also 
shown are the results of finite difference calculations reported by Troutman & 
Davis (1965) for the vertically ascending and descending parts of the shock with 
y = 1.4. The Troutman-Davis calculations, which are for a specific yield, scale 
height, and atmospheric density at  the burst point, have been appropriately 
non-dimensionalized. The calculations were carried out only up to the time when 
the upper part of the shock had travelled three scale heights from the origin. Up 
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FIGURE 2. Pressure distribution in Eulerian co-ordinates for uniform density atmosphere 
and y = 1.4. 
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FIGURE 3. Shock velocity in upward direction (0 < 8 < in) as a function of shock position. 

0, Troutman & Davis, numerical (8 = 0). 
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to this time the agreement with the results of the present analysis is excellent. 
It should be pointed out that the Troutman-Davis calculations (SAP code), 
which were made only for 0 = 0 and m, essentially embodied the locally radial 
approximation for these two locations and were thus one-dimensional. However, 
these authors compared their results with complete two-dimensional calculations 
(ROC code for y constant and variable, and Shell Oil code for y variable) and 
report little difference over the range of their calculations. 

I 2 3 4 5 
(R/A)lcos 6’1 

FIGURE 4. Shook velocity in downward direction (+T < 0 < T) as a function of shock 
position. 0 Troutman & Davis, numerical (6’ = T). 

It can be seen from figure 3 that for the ascending shock the shock velocity 
does in fact reach some minimum value beyond which it accelerates to infinity 
as was predicted in the calculations of Kompaneets (1960) and Andriankin et al. 
(1962). Thus the wave first decelerates as it moves away from the point of the 
explosion until the atmospheric density decrease ahead of the shock begins to 
affect the motion appreciably. As seen from figure 4, the descending shock does 
not experience any theoretical limit beyond which it cannot remain strong, 
provided, of course, that there is a sufficiently large energy source. The existence 
of such a limit was predicted by Kompaneets and Andriankin et al. Such a limit 
is a direct consequence of the assumption that a uniform ‘sea of pressure’ extends 
throughout the flow field, which drives a thin layer of mass present on the 
boundaries of the shock envelope. Such an assumption permits no finite pressure 
gradients in the momentum equation, and hence when the shock propagating 
upward accelerates off to infinity in a finite time and ‘blowout’ occurs, the 
immediate result is that there is no longer any pressure to drive the shock wave 
propagating in the downward direction. This is simply an inherent limitation of 
the model. In solutions, such as the present one, the force driving the shock wave 
downward is not reduced to zero upon the emergence of the shock wave at  infinity 
due to the existence of a finite pressure gradient behind the descending shock. As 
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will be shown later, however, the pressure gradient behind the ascending shock 
does go to zero at blowout within the present model. 

From figures 3 and 4 it can be seen that decreasing y reduces the shock velocity 
and this is easily understood from the energy equation (9). Examination of (9) 
shows that as y approaches 1 an increasing fraction of the total hydrodynamic 

10 

0.1 
0.1 1 10 100 

(RlA)lcos @I 
FIGURE 5. Correlation with y of shock velocity as a function of shock position. 

energy is exhibited as internal energy, thereby reducing the kinetic energy of the 
flow field. 

Equation (25) for the uniform atmosphere limit shows that the primary effect 
of the parameter y on the shock behaviour in this case could be scaled out if the 
time scale were to be reduced by (y - 1)&. Since the shock behaves initially as one 
in a uniform atmosphere this suggests that the principal effect of variations in y, 
a t  least for not too large times, could be eliminated through the introduction of 
the reduced time 

where t* is given by (19). When the density is not uniform it can be seen from (18) 
that by this transformation the y-  1 factor can be scaled out of the coefficient 
f(7) and the first but not the second term of g(7 ) .  As will be shown below, however, 
the coefficient g(7)  is in fact inversely proportional to  (y-  1) in the downward 
direction for 7 large but not in the upward direction. Therefore the scaling pro- 
posed should work well in the downward direction for all times but should be less 
satisfactory in the upward direction for the far field solution. 

In  figure 5 we have replotted the results of figures 3 and 4 but with the shock 
velocity reduced by the additional factor of (y - l)*. What is apparent is that the 
results for the different values of y are very well correlated for all times in the 
downward direction and up to quite large times in the upward direction (t** - 12; 

t"" = t*(y- l)t, (28) 
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this value is obtained from the results of figure 12 to be given below). This corre- 
lation extends well beyond the range of times (or scale heights) where the model 
has its greatest applicability. The correlation is seen to bear out the features of 
the scaling deduced from the basic equations. 

The consequence of the approximate scaling exhibited by (28) is that at  a 
given 7 for a fixed pB,  A and 0 we have the simple scaling relations 

(29 a) $ cc (y  - l)*E$, 
P8 cc (Y-1)E. (29b) 

We have here included the explosion energy E in the scaling since it shows clearly 
that the effect of decreasing y is to lower the effective yield. 

rlR 
FIGURE 6. Pressure and density distribution in Eulerian co-ordinates at R cos @/A = 3.0 
for y = 1.4; upward direction (0 < r3 < in). -, present analysis; -, Troutman & 
Davis, numerical (8 = 0). 

The flow field pressure and density behind the ascending shock are shown as a 
function of r /R  in figure 6 for Rcos0lA = 3.0 and y = 1.4. The results are com- 
pared with the finite difference calculations of Troutman & Davis (1965), 
appropriately non-dimensionalized, and, as with the shock velocity, the agree- 
ment is exceptionally good. The flow field pressure and density for the descending 
shock as a function of rlR are shown in figure 7 for Rcos0lA = - 1.5. The 
Troutman-Davis calculations are plotted for comparison and it is seen that there 
is an even higher degree of agreement in this direction. 

To see the effect of the exponential density distribution on the shape of the 
shock envelope, the shock position for y = 1.2 has been plotted at  four different 
dimensionless times T in figure 8. The length scale is here measured in scale heights 
A, and the time scale in units of (47rpBA5/E)*. Comparison is made with one of the 
shock envelope curves determined by Andriankin et ak. (denoted by A K K K )  
and it is seen to differ from the present analysis by a factor of almost 2 at 0 = 0. 
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TIR 
FIGURE 7. Pressure and density distribution in Eulerian coordinates at R cos 8/A = - 1.5 
for y = 1.4; downward direction ($77 < 8 < n). -, present analysis; IN., Troutman 
& Davis, numerical (8 = n). 

I I I 

FIGURE 8. Shock envelope at  different times for y = 1.2, wit,h length scale A and 
T = t(E/4np~A~)&. 

6 Fluid Moch. 35 
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An indication of the regions in which the local radiality assumption breaks down 
can be obtained from this plot by considering the angle between the tangent to 
the shock envelope and the radius vector. When this angle differs appreciably 
from $71, the assumption has broken down, since the 8 gradients will no longer be 
negligible. At T = 18.0 it appears that the assumption is invalid in the region 
&r < 8 < $7r) but at  T = 8.0 it still appears to be valid for all 0. 

We next consider the asymptotic or far field behaviour of the shock in the 
upward and downward directions. It should be borne in mind, however, that any 
‘exact’ far field results should not necessarily agree with those of the present 
analysis, inasmuch as the assumptions invoked in the model become less satis- 
factory at  large times. 

In the downward direction as - 7 becomes large, the asymptotic form of ( 1 7 )  

Y 3 E ( y -  1 ) ( y +  1 ) 2  cos8 5e7 

2 y -  1 167rpB(2y-1) (T) q’ 
is given by 

y--p = 

\Vriting (30)  as a first-order equation in ?j2 and integrating, 

where k, is a constant of integration. Since y > 1 ,  the term in k,  is asymptotically 
small with respect to the energy-dependent term so that the asymptotic solution 

3 E ( y  - 1 )  (y + 1 ) 2  

8 V B  

becomes 
1 2 -  - 

9 second integration yields the dominant term for 7 

7 = (R/A)cosB N -21nt. (33) 

In the notation of Raizer and Hayes we have for the vertically downward 
motion (34)  

Thus under the constant energy constraint of the present model we find 01 = 2 for 
all y > 1. This result agrees with the asymptotic self-similar solution obtained 
by Hayes (1968a) for a plane shock travelling downward subject to a conserva- 
tion of energy condition. The fact that a is here found to be independent of y 
should be considered a characteristic of the model. We should note that the far 
field asymptotic behaviour of the descending shock should approach that of a 
plane shock since under the assumption of straight streamlines (local radiality) 
the cross-sectional area of the flow increases as R2. The far field results of the 
present analysis are therefore appropriately compared with exact asymptotic 
plane shock solutions. The question of the constraints to be imposed on such 
solutions must, however, be dictated by the physics of the problem in question. 

The descending shock velocity as a function of time, as obtained from combin- 
ing the results of the indicated integrations in (22) and (23) ,  is plotted in figure 9 
for y = 1-4. Shown for comparison is the self-similar, asymptotic plane shock 
result obtained by Raizer (1963). The relevant boundary condition on this 
solution is that the pressure be zero at an infinite distance behind the shock 
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where the velocity goes to minus infinity and in addition, in order for the solu- 
tion to be single valued, that it pass through a saddle point. This latter condition 
corresponds ph ysically to having the back pressure behind the shock low enough 
in order to satisfy the saddle-point criterion. The result of Raizer is seen to  lie 
below the asymptote to the present solution, in which we have required that the 
total energy per unit solid angle remains constant. Prom physical considerations 
it is clear that this is the appropriate constraint for the near field behaviour, say 
up to 2-3 scale heights vertically downward. However, for the far-field behaviour 

10-4 

FIGURE 9 for 

the constraint will break down since the energy in a given radial slice will no 
longer remain constant. This is evidenced by the fact that the pressure at r,, = 0 
approachesp,/(y+ 1)  as 7-f -00, aresult which follows from (14), (16) and (32). 

It is interesting to note that if the energy constraint is relaxed such that the 
energy becomes arbitrary (and therefore can be set equal to zero) the asymptotic 
solution for 6 2  is given by the second term in (31) and we have 

a = (27- l)/y. (35 )  

From (14) and (16) this second solution corresponds to the condition that p = 0 
at ro = 0. This condition is then very nearly analogous to the constraint imposed 
by Raizer (1963). The values of a-l given by (35) are compared in figure 10 with 
those corresponding to Raizer’s solution as calculated by Hayes (1968a). The 
comparison is seen to be quite good with exact agreement at y = 1.0 and 2.0. In  
the limiting case y-+ 1 we might expect the agreement to be exact since in that 
case the back pressure in Raizer’s solution will tend to zero. We would emphasize 

5-2  
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again, however, that the energy constraint which was used is the physically 
meaningful one over the range of times where the present analysis may be ex- 
pected to apply. 

In the upward direction as 7 becomes large, the asymptotic form of (17) is 
given by 

q -y-l- q 2  = 
2(2y- 1) 

1.4 

1.2 

1 .0 

08 
* 
I 

0.6 @44 a=2- ' jr--l 
~ ~~ 

0 
1 1.2 1 4 16 1 +3 2.0 

Y 
FIGURE 10. Dependence of a: on y in downward direction (in- < 0 < n-). - - -, extrapolated. 

Integrating as before we have asymptotically 

where k,  is an integration constant. Thus for the upward direction the energy 
dependent term is asymptotically small compared with the second term on the 
right-hand side. Hence the asymptotic solution for d2  becomes 

A second integration of (38) gives 

with r a constant of integration. 
In  the notation of Raizer and Hayes we have 

aA 2(2y-l) A 
-tnH y-1  r-t'  Rcose - = 
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The time 7 is seen to be the time after burst when I? cos 0 becomes infinite and the 
shock wave emerges at  infinity. In  both Raizer’s and Hayes’ analyses the time 
t,H takes on only negative values and in terms of the positive time after burst t 
used in the present analysis it is given by 

t,H = t-7. (41) 

The present model thus gives for a the value 

From (42) we find for y = 1.4 a value of a = 9.00, which is 12 % larger than the 
value of 7-89 obtained by Hayes (1968b) for a curved shock based on an approxi- 
mate method. The method is one which uses a shock propagation law of the form 
suggested by the Chester, Chisnell and Whitham approximation, but with the 
exponents taken from the self-similar exponentially varying ray-tube area 
solutions of Hayes (1968a). The basic assumption in this procedure is that of 
local similarity. The curved shock results of Hayes which apply to a shock 
travelling in a ray tube with an exponentially varying area would therefore be 
expected to differ from the present model where we assume that the ray-tube area 
increases as R2. Therefore, as pointed out previously, the far field results of the 
present analysis are more properly compared with asymptotic plane shock 
solutions. Hayes (1968a) has determined the value of a corresponding to the 
exact, self-similar plane shock solution of Raizer (1964) to be 5.45 for y = 1-4, 
which differs from the value given from (42) by 39 yo. 

The difference between the asymptotic rising shock solution of the present 
model and that of Raizer’s plane shock solution can best be seen by considering 
the different physical pictures presented by the solutions. In the asymptotic 
‘self-propagating ’ solution of Raizer (1964) the pressure immediately behind the 
shock is low, while it is high at some critical distance not too far behind the shock 
where the saddle point islocated. In  Raizer’s solution therefore the shock is driven 
by the pressure gradient behind the shock. On the other hand, the present asymp- 
totic solution given by (38) and (39) corresponds to a zero pressure gradient 
behind the shock. This can be seen from (14), where we note that at  large 7 the 
bracketed terms in +j and q2 cancel identically. The asymptotic zero pressure 
gradient condition corresponds, of course, to a, zero particle acceleration and this 
may be seen from ( 1 3 ~ ) )  where we note that the right-hand side is, to within a 
constant factor, the same as the corresponding terms which cancel in (14). Thus, 
despite the fact that the flow is non-accelerating, the shock wave itself is accelera- 
ting with its acceleration determined by a shock velocity which leads to a non- 
accelerating flow but a self-propagating shock. It follows that within the present 
model the shock acceleration off to infinity is essentially a local effect and is 
independent of the energy of the source from which it originates. It is not clear 
that the constraints analogous to Raizer’s of a saddle-point condition and the 
condition that the pressure be infinite at  an infinite distance behind the shock 
where the velocity is zero could be imposed on the present model. 
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The ascending shock velocity as a function of time is determined by combining 
the results of the integrations indicated in (22) and (23) and is plotted in figure 11 
for y = 1.4. The approximate curved shock asymptote of Hayes (1968 b )  is shown 
along with the exact plane shock asymptote of Raizer (1964) (as calculated by 
Hayes 1968 a) and equation (40). The dimensionless blowout tinie, 

T[EI C O S ~  II I /47rpB A5]J 
is found to be 16.16. Figure 12 shows the same quantities for y = 1.2 with the 
dimensionless blowout time equal to 28.1 1. Also shown in figure 12 for comparison 
is the Andriankin et al. (1962) solution, which is seen to agree only qualitatively 
with the other solutions. 

10 

1 

0.1 
0.1 1 10 100 

FIGURE 11. Shock velocity in upward direction (0 < t) < k7r) as a function of time before 
blowout for y = 1.4; blowout time T ( E  c0s5 8/47rpsA5)4 = 16.10. 

It can be seen from figures 11 and 12 that the deviation between the values of a 
predicted by the present analysis and that of Raizer increases for decreasing y. 
To show this behaviour more clearly we have in figure 13 plotted a-1 as a function 
of y and compared our values with the Raizer plane shock values (as calculated 
by Hayes 1968a and Grover & Hardy 1966). The curved-shock asymptotic 
results of Hayes (1968b) are also shown for comparison. 

4. Modified Sachs scaling 
An empirical concept which is applied to the calculation of the overpressure 

for explosions in an exponential atmosphere is that of modified Sachs scaling 
(see Lutzky & Lehto 1968). According to this concept the overpressure a t  a 
distance R from an explosion of energy E in a uniform atmosphere of ambient 
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FIGURE 13. Dependence of cr. on y in upward direction (0 < 0 < an-). - - -, extrapolat,ed. 
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pressure p ,  is the same as the overpressure at  a distance R from an explosion of 
energy E in a non-uniform atmosphere provided that in the non-uniform case 
the ambient pressure at  the distance R is p,. 

Lutzky & Lehto (1967) have noted that modified Sachs scaling agrees quite 
well with the one-dimensional numerical calculations (Hydrocode) which they 
have carried out for 8 > $n, with a maximum percentage difference of about 
20 yo. The reasons for this apparent agreement of modified Sachs scaling with 
finite difference calculations can be easily understood for the case of a strong 
shock within the context of the present model. 

For a strong shock the overpressure is given by (7), since ps $ p,, so that from 
(26) we have for Ap in the uniform density limit 

For 7 large with 8 > in we have for the exponential atmosphere from (16) and (32) 

Numerical results show that in the downward direction p,  lies between the values 
given by (43) and (44) for all R. 

The ratio of the shock pressure given by (43) to that given by (44) is 

If this ratio were equal to one, then the present model would agree exactly with 
modified Sachs scaling. This is very nearly the case, since as y-f 1 this ratio 
obviously approaches one. For y = 1.4, the ratio is 0.766, which no doubt accounts 
for the maximum variation of 20 yo between modified Sachs scaling in the down- 
ward direction and the finite difference calculations reported by Lutzky & Lehto. 
The present analysis shows therefore that for a strong shock modified Sachs 
scaling gives ‘reasonable’ results for 8 2 in, independent of the value of p,, 
provided po < Ap. 

Comparison of modified Sachs scaling with the present analysis for the upward 
direction shows a difference of 26 Yo at 7 = 2.0 and 38 yo at 3.0 for y = 1.4. The 
reason for this large and growing deviation with increasing distance can be seen 
from (16) and (38) which yield 

It is clear that the exponential growth of the shock velocity in the upward 
direction is not sufficient to offset the exponential decay in the density, with the 
result that modified Sachs scaling has but a limited range of applicability in the 
upward direction. 
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5. Concluding remarks 
A model has been developed which predicts the position of the shock envelope 

as a function of both time and space and which provides an analytic prediction 
of the flow variables behind the shock. Over the available range of finite difference 
calculations there is excellent agreement with the present results. 

Two scaling laws are presented. The first, which is exact within the theory 
completely eliminates the parametric dependence on E,  A and ps and almost 
eliminates the dependence on 8 by transforming the infinity of solutions for 
various polar angles into two distinct solutions corresponding to the upward 
and downward motions. The second scaling law, which1 is semi-empirical, 
eliminates the primary dependence of the solution on the adiabatic exponent y 
over the range of shock positions where the analysis would be expected to 

The descending shock solution shows that there is no theoretical limit as to 
how far downward a strong shock may propagate, contrary to the prediction of 
Kompaneets (1960) and Andriankin et al. (1962). It demonstrates that the up- 
ward propagating shock does in fact reach some minimum velocity beyond which 
it accelerates to infinity in a finite amount of time. It is shown that by relaxing 
the constant energy constraint for the descending shock, good asymptotic 
agreement with the exact plane shock solution of Raizer (1963) can be achieved. 
The far field results for the rising shock are found to agree favourably with the 
approximate asymptotic curved shock results of Hayes (1968b), and with the 
asymptotic plane shock results of Raizer (1964). The fact that a measure of 
agreement with the asymptotic calculations is obtained is somewhat surprising 
in view of the limitations of the model in the far field where it is not expected to 
apply. The empirical concept of modified Sachs scaling is shown to give reason- 
able results for 8 > &7r at all shock locations although for 8 < &- there is only a 
limited range of shock positions close to the source where it is applicable. 

The integral method which has been used here appears to have promise for the 
solution of a wide variety of problems in shock dynamics. An important feature 
of the method is that the approximations to the integrands are inherently exact 
at  the shock front. 
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Appendix 

the shock and (12c )  we have 
Eliminating a2r/at2 between the radial momentum equation (4) evaluated a t  

where use has been made of the boundary condition (7). On evaluating the 
pressure-gradient term in the above relation we may insert the resulting value 
of (a2r/arg)R into (12c) to determine the acceleration in terms of R and its de- 
rivatives. 

From the energy equation (5) and the strong shock condition (6) 

The first term on the right-hand side may be evaluated from (7)  as 

while from (2) 

Finally from the continuity equation ( 3 )  

(A 6) 

where (i3r/i3r,,)R has been replaced by ( 1  1) .  
Substituting (A 3 )  to (A 5) into (A 2 )  and replacing the pressure gradient 

term in (A 1) by the resulting expression determines (a2r/arg)Rl?2. From (12c )  the 
result given by ( 1 3 c )  follows. 
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